

BNL Precision Astronomy 2014

NAOJ/HSC

HSC

Comparison

	Suprime-Cam	HSC
Field of View	0.5 deg	1.5 deg
No. of CCDs	10	116
Inst. Img Qlty	0".33	0".35
First Light	1999	2012

Comparison

	HSC	Pan-STARRS	DES	LSST
Aperture [m]	8.2	1.8	4.0	6.5(eq)
Survey Speed	91	13.4	37	329
Inst. Img Qlty	0".35	~ 0".6	~ 0".6	?
First Light	2012	2009	2012	(2019)
Lead Country	JР	US	US	US

116 Mosaic CCD

CCD

Collaboration with Hamamatsu since 1994

- 2k4k 15μm
- Fully depleted CCD
- High resistivity Si
 - > 10 k Ω (n type)
- 200 μm thick
 - (can be $\sim 300 \, \mu \text{m}$)

HPK Fully Depleted CCD

CCD Structure	Full Frame Transfer
Si Thickness	$200 \ \mu \text{m} \ (\text{Can be } 100 \sim 300 \ \mu \text{m})$
Vertical clock phase	3 phases
Horizontal clock phase	2 phases or 4 phases
Output Amprilfiers	4 one stage MOSFET on chip
	and one J-FET on the package
Package Material	Aluminum Nitride

Package

Package

Pin Base

• AIN with Ti alignment pins

10

Package Structure

Pixel <-> Pin alignment ~ 60 µm

HSC

Flatness of the Focal Plane

Red contour: Delivered PSF under 0.4 arcsec seeing

NAOJ/HSC

CCD Checker

Final Check: Amplifier, SG

Backside ...

NAOJ/HSC

Electronics Connection

Electronics Arrays

Electronics Cooling

Official Drawing ...

CCD Clocking

Figure 6.27: Clock Driver Circuit

CCD Read Out

Figure 1.4: Pre-amplifire and CDS circuit

AC-couple Single Noninverting Amp Integration Type CDS

~ 150 kpix/sec = 15 sec readout

FEE arrangement in Dewar

Backend Electronics (BEE)

Readout time:

CCD Clocking ~ 15 sec

+ transfer/save to RAID 13 sec

HSC BEE

KEK NAOJ UT-Phys

Linearity

Linearity

Lab. measurement

HSC Electronics

30

Linearity Measurement on Telescope

From flat images with different exposure T

somehow harsh results ... but P-V <~ 0.5 %

~70 % FW

Brighter Fatter Effect

Pierre's slide (2013)

Very Sharp Image Realized as designed

HSC Project Miyazaki

HSC Project

Miyazaki

HSC Project

Miyazaki

HSC Project

Miyazaki

Ellipticity

HSC Project Miyazaki

The survey began last February.

NAOJ HSC

Survey Mode Observation

Step and Point multiple exposures

Example to cover ~ 20 deg^2

NAOJ

GAMA Field

2014/3/27 2:20 - 5:20 am

HSC

The Highest Peak on GAMA

HSC

Conclusion

- HSC up and running
- Steady Operation since Feb 2014
 - Natural seeing limited imaging mostly
 - 30 sec dead time (inc. readout/save to disk/ pointing change/guide star acquisition)
- Sufficient for most of observers
- But, need more understandings of our instruments to realize high precision measurements